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Abstract: Cancer stem cells (CSCs) are a subpopulation of tumor cells that possess self-renewal and tumor initiation 
capacity and the ability to give rise to the heterogenous lineages of cancer cells that comprise the tumor. CSCs possess 
numerous intrinsic mechanisms of resistance to chemotherapeutic drugs, novel tumor-targeted drugs and radiation 
therapy, allowing them to survive current cancer therapies and to initiate tumor recurrence and metastasis. Recently, 
different pathways that confer resistance and survival of CSCs, but also compounds and drugs that selectively target 
some of these pathways in CSCs have been identified. Such compounds and drugs include antibiotics like salinomycin, 
phytochemicals such as parthenolide, cyclopamine, EGCG, resveratrol, curcumin, sulforaphane and oxymatrine, the 
small molecule inhibitors vismodegib and repertaxin, monoclonal antibodies and antibody constructs raised against cell 
surface proteins expressed by CSCs, and, surprisingly, some classical drugs such as metformin, tranilast and 
thioridazine. These agents exhibit significant anti-CSC activity, alone or in combination with cytostatic drugs or tumor-
targeted drugs, as recently shown in vitro and in human xenograft mice. Since current cancer therapies fail to eliminate 
CSCs, leading to cancer recurrence and progression, selective targeting of CSCs with compounds and drugs introduced 
herein may represent a novel therapeutic strategy to eradicate cancer. 
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1. MECHANISMS OF THERAPEUTIC RESISTANCE 
AND SURVIVAL OF CSCs 

The experimental demonstration of CSCs in a 

variety of human malignant tumors, including cancers 
of the blood, breast, brain, bone, skin, liver, lung, 
bladder, ovary, prostate, colon, pancreas and head and 
neck has led to the conceptual hypothesis that tumors, 
like physiologic proliferative tissues, can be 
hierarchically organized and propagated by limited 

numbers of dedicated stem cells [1-8]. According to a 
consensus definition, these CSCs are cells within a 
tumor that possess the capacity to self-renew and to 
give rise to the heterogeneous lineages of cancer cells 
that comprise the tumor [9]. CSCs can be defined 
experimentally by their ability to recapitulate the 

generation of a continuously growing tumor in serial 
xenotransplantation settings [9], and recent studies 
provide evidence for the existence and relevance of 
CSCs in clinical therapeutic situations [10-12].  

Unfortunately, CSCs possess numerous intrinsic 
mechanisms of resistance to conventional 
chemotherapeutic drugs and radiation therapy, 
including expression of ATP-binding cassette (ABC) 

drug pumps, such as ABCG2/BCRP and P-
glycoprotein/MDR1 [13-17], activation of Wnt/ -catenin 
signaling [18-21], activation of the Hedgehog and 
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Notch signaling pathways [20-25], expression and 
activation of the Akt/PKB and ATR/CHK1 survival 
pathways [26-28], aberrant PI3K/Akt/mTOR-mediated 
signaling and loss of phosphatase and tensin homolog 
(PTEN) [29-31], amplified activity of aldehyde 
dehydrogenase 1 (ALDH1) [32-35], amplified 
checkpoint activation and efficient DNA and oxydative 
damage repair [36-42], acquisition of epithelial-
mesenchymal transition (EMT) [10, 24, 43, 44], 
constitutive activation of NF- B [45-47], expression of 
CD133/prominin-1 and general radioresistance [36, 37, 
48-50], radiation-induced conversion of cancer cells to 
CSCs [51], protection from apoptosis by autocrine 
production of interleukin-4 [52, 53], various 
mechanisms of apoptosis resistance and defective 
apoptotic signaling [49, 54, 55], protection by 
microenvironment and niche networks [29, 56, 57], 
metabolic alterations with a preference for hypoxia [58, 
59], immune evasion [60-62], low proliferative activity 
[63], and, ultimately, transient or long-termed 
quiescence, the latter also termed dormancy [64, 65].  

Many of these intrinsic mechanisms as well as yet 
unknown mechanisms of resistance and immortality 
[66-69] allow CSCs to survive current cancer therapies 
and to initiate reconstitution of the original tumor, long-
term tumor recurrence and metastasis [10-12, 70-75].  

2. RESISTANCE OF CSCs TO NOVEL TUMOR-
TARGETED DRUGS  

Similar to conventional anticancer drugs, numerous 
novel tumor-targeted drugs were designed to target 
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rapidly proliferating cancer cells, so that CSCs might be 
relatively insensitive to these drugs. For instance, 

imatinib has been developed as an inhibitor of the Bcr-
Abl tyrosine kinase, which constitutes the fusion protein 
product of a chromosomal translocation (so called 
Philadelphia chromosome) that acts as a molecular 
switch for proliferation and differentiation of multipotent 
progenitor cells in chronic myeloid leukemia (CML) 

[76]. Imatinib has been shown to eliminate proliferating, 
committed leukemia progenitors, but not 
nonproliferating CML stem cells [77-79], which persist 
after imatinib therapy [80], and, after initial therapeutic 
success, many CML patients become resistant to 
imatinib therapy [81].  

Furthermore, trastuzumab, a humanized 
monoclonal antibody directed against HER2 has been 

developed to treat patients with HER2-overexpressing 
breast cancers that represent one fourth of all breast 
cancer patients [82]. HER2 is a member of the human 
epidermal growth factor receptor tyrosine kinase family 
that is preferentially expressed in breast and ovarian 
cancer and that activates signaling pathways that 

promote tumorigenic cellular processes, such as 
proliferation and evasion of apoptosis [83, 84]. 
However, trastuzumab mono-therapy in patients with 
HER2-overexpressing metastatic breast cancer shows 
a response rate of no more than 30 % [85], and primary 
or acquired resistance to trastuzumab occurs 

frequently in different clinical settings even when 
combination regimes are used [82, 86, 87]. One 
important mechanism of trastuzumab resistance in the 
therapy of HER2-overexpressing breast cancer might 
be the failure of trastuzumab to target breast CSCs [73, 
88-90]. Trastuzumab has been shown to exert its 

antitumor activities only effectively in the presence of a 
normal PI3K signaling pathway and in the presence of 
PTEN [91-94], but, as noted above, CSCs display 
aberrant PIK3K signaling and loss of PTEN [29-31]. A 
similar scenario has been reported for the small 
molecule dual inhibitor of EGFR tyrosine kinase and 

HER2 tyrosine kinase, lapatinib, which loses its 
therapeutic activity in breast cancers displaying loss of 
PTEN [95].  

Finally, sorafenib, a small molecule inhibitor of 
multiple tyrosine kinases involved in tumor proliferation 
and tumor angiogenesis, including Raf, VEGFR, 
PDGFR and FLT3 [96] has been established in the 
treatment of acute myeloid leukemia (AML) because 

FMS-like tyrosine kinase 3 (FLT3) is overexpressed in 
leukemic blasts in almost all cases of AML [97]. As 
demonstrated recently, sorafenib is capable of reducing 

the number of mature AML progenitors, but fails to 
eradicate AML stem and primitive progenitor cells due 

to robust protection of these cells by the bone marrow 
stromal microenvironment [98], providing a further 
paradigm that novel tumor-targeted drugs fail to 
eliminate CSCs. 

3. THE CHALLENGE OF TARGETING CSCs AND 
THEIR PROGENY 

According to the cancer stem cell concept of 
carcinogenesis [1, 3, 4, 7-9, 99], CSCs represent novel 
and translationally relevant targets for cancer therapy, 
and the identification, development and therapeutic use 
of compounds and drugs that selectively target CSCs is 
a major challenge for future cancer treatment [5, 67, 

100-102]. However, the goal for any CSC-directed 
therapy should be the eradication of all CSCs in a 
patient, and the efficacy of single agents targeting 
CSCs may be limited by several factors. CSCs can 
represent a heterogenous population that may not be 
homogeneously sensitive to a given anti-CSC agent [8, 

103-105], and, under the selection pressure of agents 
targeting CSCs, therapy resistant CSC clones may 
emerge [106]. Therefore, the eradication of all CSCs 
will likely require targeting of more than one intrinsic 
pathway operating in CSCs to reduce the probability of 
escape mutants [100, 107-109]. Moreover, agents 

causing tumor regression in advanced stages of cancer 
likely reflect effects on the bulk tumor population, but 
may have minimal effect on the CSC population. In 
contrast, a CSC-specific therapy would show modest 
effect on tumor growth of the bulk tumor population in 
advanced stages of cancer, but may have substantial 

clinical benefit in early stages of cancer as well as in 
neoadjuvant and adjuvant clinical settings [101]. 
Ultimately, cure of cancer will require the eradication of 
all malignant cells within a patient´s cancer: CSCs and 
their progeny. Therefore it will be important and 
promising to combine in sophisticated clinical settings 

CSC targeting agents with novel tumor-targeted drugs 
and conventional cytotoxic drugs. Such combinations 
may act in concert to eradicate CSCs, more 
differentiated progenitors and bulk tumor cells in cancer 
patients [110-117].  

4. COMPOUNDS AND DRUGS THAT TARGET CSCs 

Various compounds and drugs that selectively 
target CSCs have been discovered recently [67, 100, 
102, 118], (Table 1). These agents include microbial-

derived and plant-derived biomolecules [119-123], 
small molecule inhibitors targeting key components of 
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intrinsic signaling pathways of CSCs [31, 124-126], 
antibodies directed against CSC-specific cell surface 

molecules [127-129], and, surprisingly, some classical 
drugs, such as metformin [130-133], tranilast [102, 134] 
and thioridazine [135] that have been used for decades 
for the treatment of metabolic, allergic, and psychotic 
diseases, respectively.  

Although these compounds and drugs have been 
shown to effectively target signaling pathways and/or 
molecules selectively operating in CSCs, some of them 
are also capable of killing other types and 
subpopulations of cancer cells, which do not display 
CSC properties. In particular, the biomolecules 
salinomycin and parthenolide as well as the biguanide 
metformin have been demonstrated to induce 
apoptosis in various types of human cancer cells [120, 
136, 137], suggesting that these compounds may 
contribute to the eradication of cancer more effectively 
than compounds targeting either CSCs or regular 
cancer cells. Moreover, the ionophore antibiotic 
salinomycin seems to have even extended capabilities 
of eliminating cancer, because this compound has 
been demonstrated to effectively target regular cancer 
cells [16, 138-140], highly multidrug and apoptosis 
resistant cancer cells [16, 138, 141], and CSCs [16, 
116, 117, 141-146]. Finally, recent data obtained in 

vitro and in xenograft mice bearing human cancers 
indicate that CSC targeting agents are most effective in 
eradicating CSCs and their progeny when these agents 
are combined with conventional cytostatic drugs and/or 
novel tumor-targeted drugs [90, 116, 117, 131, 141, 
143, 147-152], envisioning the use of complex 
combination therapies for the future treatment of 
cancer.  

4.1. Microbial-Derived Compounds/Antibiotics 

4.1.1. Salinomycin 

Salinomycin is a monocarboxylic polyether antibiotic 
that was originally isolated from the culture broth of the 

actinobacterium Streptomyces albus (strain No. 80614) 
[153]. The large 751 Da pentacylic molecule with a 
unique tricyclic spiroketal ring system and an 
unsaturated six-membered ring constitutes a lipophilic, 
anionic and weakly acidic compound with the molecular 
formula C42H70O11 [153, 154]. Salinomycin acts in 

biological membranes, including cytoplasmic and 
mitochondrial membranes, as a monovalent cation 
ionophore with strict selectivety for alkali ions and a 
strong preference for K+ [155], thereby promoting 
mitochondrial and cellular K+ efflux and inhibiting 
mitochondrial oxidative phosphorylation [156].  

Salinomycin displays antimicrobial activity against 
Gram-positive bacteria including Bacillus subtilis, 

Staphylococcus aureus, Micrococcus flavus, Sarcina 

lutea and Mycobacterium spp., some filamentous fungi, 
Plasmodium falciparum and Eimeria spp., the latter 
constitute protozoan parasites responsible for the 
poultry disease coccidiosis [153, 157, 158]. Therefore, 
salinomycin is used until today as an anticoccidial drug 

in poultry and is also fed to ruminants and pigs to 
improve nutrient absorption and feed efficiency [157, 
159]. Furthermore, salinomycin is a positive ionotropic 
and chronotropic agent that increases cardiac output, 
left ventricular systolic pressure, heart rate, mean 
arterial pressure, coronary artery vasodilatation and 

blood flow, and plasma catecholamine concentration, 
as demonstrated in mongrel dogs receiving a single 
intravenous injection of 150 μg kg-1 salinomycin [160]. 
For several reasons, salinomycin has never been 
established as a drug in humans until now. For 
instance, a case of an accidental inhalation and 

swallowing of about 1 mg kg-1 salinomycin by a 35-
year-old male human revealed severe acute and 
chronic salinomycin toxicity with acute nausea, 
photophobia, leg weakness, tachycardia and blood 
pressure elevation, and a chronic creatine kinase 
elevation, myoglobinuria, limb weakness, muscle pain 

and mild rhabdomyolysis [161]. Risk assessment data 
recently published by the European Food Safety 
Authority declare an acceptable daily intake (ADI) of 5 
μg kg-1 salinomycin for humans, and daily intake of 
more than 500 μg kg-1 salinomycin by dogs leads to 
neurotoxic effects, such as myelin loss and axonal 

degeneration [162]. In view of this considerable toxicity 
in mammals, salinomycin has only been used for more 
than 30 years as a coccidostat and growth promoter in 
livestock and was not considered as a drug for 
humans.  

It was a great surprise when Lander, Weinberg and 
colleagues showed in 2009 that salinomycin selectively 
kills human breast CSCs [142]. In a sophisticated 

experimental approach, the authors used oncogenic 
transformed immortalized human mammary epithelial 
cells (termed HMLER), in which knockdown of E-
cadherin by RNA interference resulted in the 
generation of cells undergoing epithelial-mesenchymal 
transition (EMT), a latent embryonic program that can 

endow cancer cells with migratory, invasive, self-
renewal and drug resistance capabilities [163-165]. 
These human breast cancer stem-like cells (termed 
HMLER-shEcad) displayed characteristic properties of 
CSCs, were capable of forming tumorspheres in 
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Table 1: Compounds and Drugs that Target CSCs 

Class Compound Targets Clinical Status References 

Microbial-derived, 

ionophore antibiotic 

Salinomycin Breast CSCs, 

AML SCs, 

gastrointestinal stroma tumor (GIST) 
CSCs, 

gastric CSCs, 

lung CSCs,  

osteosarcoma CSCs, 

colorectal CSCs, 

squamous cell carcinoma CSCs,  

prostate CSCs 

pancreatic CSCs 

Phase I/II: 

triple negative 

breast cancer 

[16] 

[116] 

[117] 

[138] 

[141] 

[142] 

[143] 

[144] 

[145] 

[146] 

[147] 

[169] 

[170] 

[171] 

Microbial-derived, 
antibiotic 

3-O-methylfunicone 
(OMF) 

Breast CSCs Preclinical [188] 

Plant-derived, 

sesquiterpene lactone 

Parthenolide 

and 

dimethylamino-
parthenolide LC-1 

AML SCs, 

lymphoid leukemia SCs 

breast CSCs, 

prostate CSCs, 

myeloma CSCs 

Phase I: 

LC-1, 

acute myeloid leukemia 

[46] 

[197] 

[198] 

[199] 

[200] 

[201] 

[202] 

[203] 

[204] 

Plant-derived, 

steroidal alkaloid 

(Smo antagonist, 
Hedgehog pathway 

inhibitor) 

Cyclopamine 

and IPI-926 (Saridegib) 

Glioblastoma CSCs, 

multiple myeloma CSCs, 

chronic myeloid leukemia SCs, 

gastric CSCs, 

hepatoma CSCs, 

breast CSCs, 

prostate CSCs 

Phase I: 

IPI-926 (Saridegib), 

advanced solid tumors 

[22] 

[44] 

[211] 

[212] 

[213] 

[214] 

[215] 

[216] 

[217] 

[219] 

Plant-derived, 

catechin/polyphenol 

EGCG 

(epigallocatechin-3-
gallate) 

and synthetic EGCG 
analogs 

Prostate CSCs, 

pancreatic CSCs, 

breast CSCs 

Phase I-II, 

metastatic prostate 
cancer,  

advanced solid tumors, 

small cell lung cancer, 

various 

chemopreventive studies  

[225] 

[226] 

[228] 

[229] 

[230] 

Plant-derived, 

stilbenoid/ 

natural polyphenol 

Resveratrol Medulloblastoma CSCs, 

breast CSCs, 

pancreatic CSCs, 

glioblastoma CSCs 

Phase I, II, 

colon cancer 

[235] 

[236] 

[237] 

[238] 

[239] 

[244] 
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(Table 1). Continued. 

Class Compound Targets Clinical Status References 

Plant-derived, 

curcuminoid/ 

natural polyphenol 

 

Curcumin, 

analogs 

GO-Y030, 

difluorinated-curcumin 
(CDF) 

Glioblastoma CSCs, 

colon CSCs, 

pancreatic CSCs, 

breast CSCs 

 

Phase II,  

advanced pancreatic and 

breast cancer. 

Phase IIa, prevention of 
colon cancer. 

[150] 

[247] 

[251] 

[252] 

[253] 

[254] 

[256] 

[258] 

[259] 

[260] 

Plant-derived, 

natural isothiocyanate 

Sulforaphane Pancreatic CSCs, 

breast CSCs, 

prostate CSCs, 

chronic myeloid leukemia SCs 

Preclinical [151] 

[152] 

[262] 

[263] 

[266] 

[267] 

Plant-derived, 

quinolizidine alkaloid 

Oxymatrine Breast CSCs Preclinical [264] 

[265] 

Small-molecule inhibitor 

(Smo antagonist, 
Hedgehog pathway 

inhibitor) 

Vismodegib  

(GDC-0449) 

Pancretic CSCs, 

lung CSCs, 

 

Phase I, II, 
medulloblastoma, basal 

cell carcinoma, 
glioblastoma, 

chondrosarcoma, colon, 
lung, ovarian, pancreatic, 

breast and gastric 
carcinoma. 

[277] 

[278] 

[279] 

[280] 

[281] 

Small-molecule inhibitor 

(inhibitor of CXCR1 and 
CXCR2) 

Repertaxin Breast CSCs Preclinical [124] 

Classical drug 

(biguanide); 

anti-diabetic drug 

Metformin Breast CSC, 

pancreatic CSC, 

thyroid CSC 

Phase I-III, 

breast cancer, 

prostate cancer, 

various solid tumors. 

Combination with 
conventional anti-cancer 

drugs. 

[90] 

[112] 

[115] 

[130] 

[131] 

[303] 

[304] 

[305] 

[306] 

[307] 

[308] 

Classical drug 

(synthetic cinnamoyl 
anthranilate); 

anti-allergic and anti-
fibrotic drug  

Tranilast Breast CSCs Preclinical [134] 

Classical drug  

(piperidine 

phenothiazine); 

neuroleptic-
/antipsychotic-drug 

Thioridazine AML SCs Preclinical [135] 

Monoclonal antibody H90 

(anti-CD44) 

AML SCs Preclinical [332] 
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(Table 1). Continued. 

Class Compound Targets Clinical Status References 

Monoclonal antibody P245 

(anti-CD44) 

Breast CSCs Preclinical [333] 

Monoclonal antibody B6H12.2 

(anti-CD47) 

AML SCs, 

bladder CSCs 

Preclinical [342] 

[343] 

Monoclonal antibody 7G3, 

CSL362 

(anti-CD123) 

AML SCs Phase I: 

CSL362, 

AML 

[347] 

Bispecific antibody, 
bifunctional 

MT110 

(anti-EpCAM/ 

anti-CD3) 

Colon CSCs, 

pancreatic CSCs 

Phase I, 

advanced solid tumors 

[352] 

[353] 

Bispecific antibody, 

trifunctional 

Catumaxomab 

(anti-EpCAM/ 

anti-CD3) 

CSCs in malignant ascites induced 
by human ovarian, gastric and 

pancreatic cancer 

Phase I-III, 

malignant pleural 
effusions, malignant 

ascites, 

peritoneal 
carcinomatosis, non-

small cell lung cancer, 
ovarian, gastric and 

epithelial cancer 

[357] 

[358] 

[359] 

[360] 

 

suspension cultures (a standard clonogenic assay for 
the detection of self-renewal of CSC, Ref. 9), showed 
high and low expression of CD44 and CD24, 
respectively, and exhibited resistance to 
chemotherapeutic drugs and cytotoxic agents, such as 
paclitaxel, doxorubicin, actinomycin D, camptothecin 

and staurosporine [142]. In a high-throughput 
screening approach, about 16,000 compounds from 
chemical libraries, including biological molecules and 
natural extracts with known bioactivity, were tested for 
activity and toxicity against HMLER-shEcad cells. From 
a pool of 32 promising candidates, only one compound 

markedly and selectively reduced the viability of breast 
cancer stem-like HMLER-shEcad cells: salinomycin. It 
was further demonstrated that salinomycin, in contrast 
to the anti-breast cancer drug paclitaxel, selectively 
reduces the proportion of CD44high/CD24low CSCs in 
cultures of mixed populations of HMLER-shEcad cells 

and control cells that had not undergone EMT. In 
addition, pre-treatment of HMLER-shEcad cells with 
salinomycin resulted in inhibition of HMLER-shEcad-
induced tumorsphere formation, which was not 
observed after pre-treatment of the cells with paclitaxel 
[142]. Using comparative global gene expression 

profiling, it was shown that, in CD44high/CD24low 

HMLER cells, salinomycin, but not paclitaxel, was 
capable of changing gene expression signatures 
characteristic of breast CSCs or mammary epithelial 
progenitor cells isolated from human breast cancers. In 
particular, expression of genes that inversely correlates 

with metastasis-free survival, overall survival and 
clinical outcome of breast cancer patients [166, 167], 
was down-regulated by salinomycin. Expression of a 
set of genes that promote the expansion of mammary 
epithelial stem cells and the formation of tumorspheres 
[168] was also markedly down-regulated by 

salinomycin, but not by paclitaxel. In contrast, genes 
involved in mammary epithelial differentiation that 
encode membrane-associated and secreted proteins of 
the extracellular matrix were up-regulated by 
salinomycin [142]. Finally, as a proof of principle, it was 
demonstrated that salinomycin inhibits the ability of 

breast CSCs to form tumors in mice. Pre-treatment of 
HMLER cells for 7 days with salinomycin and 
subsequent serial limiting dilution and injection of the 
cells into NOD/SCID mice resulted in a >100-fold 
decrease in tumor-seeding ability, relative to 
pretreatment of the cells with paclitaxel. Finally, 

salinomycin treatment of NOD/SCID mice with human 
breast cancers (xenograft mice) resulted in a reduction 
of the tumor mass and metastasis, and explanted 
tumors showed a reduced number of breast CSCs as 
well as an increased epithelial differentiation [142]. 

According to the primary finding that salinomycin 
induces massive apoptosis in human cancer cells that 
display different mechanisms of drug and apoptosis 

resistance [138], a subsequent study demonstrated 
that salinomycin is able to overcome ABC transporter-
mediated multidrug resistance and apoptosis 
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resistance in human acute myeloid leukemia stem cells 
(AML SCs) [16]. As demonstrated in the study, 

expression of functional ABC transporters, such as P-
glycoprotein/MDR1, ABCG2/BCRP and 
ABCC11/MRP8 in human KG-1a AML SCs confers 
resistance of the cells to various chemotherapeutic 
drugs, including cytosine arabinoside, doxorubicin, 
gemcitabine, 5-fluorouracil, topotecan, etoposide and 

bortezomib, but not to salinomycin, which was capable 
of inducing massive apoptosis in KG-1a AML SCs [16]. 
Of note, salinomycin did not permit long-term 
adaptation and development of resistance of KG-1a 
AML SCs to apoptosis-inducing concentrations of 
salinomycin, whereas the cells could readily be 

adapted to survive and to proliferate in the presence of 
initially apoptosis-inducing concentrations of 
doxorubicin and bortezomib [16], (Figure 1). 

These findings strongly suggest that salinomycin is 
capable of targeting breast CSCs and AML SCs, and a 
series of recent studies show similar effects of 
salinomycin in other types of CSCs. In gastrointestinal 
stromal tumors (GIST), a subpopulation of cells 

expressing CD44, CD34 and kit (activating stem cell 
factor receptor) have been identified as cells with self-
renewal and tumorigenic capabilities [143]. These Kitlow 

CD44+ CD34+ CSCs are resistant to inhibition of 
proliferation by imatinib, a tyrosine kinase inhibitor 
targeting oncogenic kit signaling that is commonly used 

in the treatment of metastatic GIST [143]. By contrast, 
salinomycin nearly completely inhibited the proliferation 
of Kitlow CD44+ CD34+ CSCs without causing 
apoptosis, and salinomycin also promoted fibroblast-
like differentiation of the cells [143]. However, a 
combined treatment of the cells with imatinib and 

salinomycin caused a significantly greater inhibition of 
proliferation than salinomycin alone [143]. Thus, the 
study demonstrates that salinomycin is able to inhibit 
proliferation and to induce differentiation of GIST 
CSCs, and also suggests that a combination of 
salinomycin and imatinib may provide therapeutic 
benefit for patients with GIST.  

Similar results were obtained in CD44+ CD24- 

ALDH1+ breast CSCs isolated from the human breast 
cancer cell line MCF-7. In CD44+ CD24- ALDH1+ 
MCF-7-derived breast CSCs, salinomycin was capable 
of markedly reducing the tumorsphere formation of the 
cells and the percentage of ALDH1+ expressing cells 
by nearly 50 fold [141]. Treatment of the cells with 

salinomycin as well as combined treatment with 
doxorubicin and salinomycin, but not treatment with 
doxorubicin alone, reduced the cloning efficiency by 

10-30 fold and markedly increased apoptosis in CD44+ 
CD24- ALDH1+ breast CSCs [141]. Similar results 

were obtained recently in MCF-7-derived breast CSCs 
and HER2-expressing breast cancer cells that were 
more effectively killed by the combination of 
salinomycin and trastuzumab than by salinomycin or 
trastuzumab alone [147], providing further evidence 
that salinomycin alone and particularly in combination 

with conventional anti-cancer drugs effectively targets 
CSCs. 

Salinomycin has recently been shown to target 
CSCs in different types of human cancers, including 
gastric cancer [146], lung adenocarcinoma [145], 
osteosarcoma [169], colorectal cancer [144], squamous 
cell carcinoma (SCC) [170] and prostate CSCs [171], 
suggesting that salinomycin may be effective in 

targeting CSCs of many, if not all, types of human 
cancers, although it is currently not known whether all 
cancers contain subpopulations of CSCs. In ALDH1+ 
gastric CSCs, which displayed resistance to the 
conventional chemotherapeutic drugs 5-fluorouracil 
and cisplatin, salinomycin effectively inhibited 

tumorsphere formation, proliferation and viability of the 
cells [146]. Similar results were obtained in ALDH1+ 
CSCs derived form lung adenocarcinoma cells [145] 
and in osteosarcoma CSCs [169]. In colorectal cancer 
cells and in SCC cells, salinomycin, but not oxaliplatin 
or cisplatin, was capable of significantly reducing the 

proportion of CSCs, as detected in tumorsphere assays 
[144, 170] and in human SCC xenograft mice [170].  

Importantly, salinomycin in combination with a 
conventional cytotoxic drug eradicates human cancers 
in xenograft mice much more efficiently than the single 
agent [116, 117]. In particular, salinomycin inhibited the 
growth of CD133+ pancreatic CSCs in tumorsphere 
formation assays, while the cytotoxic drug gemcitabine, 

a nucleoside analog commonly used in the treatment of 
metastatic pancreatic cancer, induced marked 
apoptosis in non-CSC CD133- pancreatic cancer cells 
[116]. Consistently, salinomycin combined with 
gemcitabine eradicated human pancreatic cancer in 
xenograft mice much more efficiently than either 

salinomycin or gemcitabine [116]. Similar results were 
obtained in a study using CD44+ CD24- breast CSCs 
sorted from the human breast cancer cell line MCF-7 
[117]. Salinomycin more efficiently inhibited the 
proliferation of CD44+ CD24- breast CSCs than of the 
parental MCF-7 cells, and salinomycin was able to 

induce significant tumor regression and to reduce the 
number of CD44+ CD24- breast CSCs in tumors 
established by MCF-7 cells in xenograft mice [117]. Of 
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note, salinomycin in combination with paclitaxel almost 
completely eradicated the MCF-7 tumors in xenograft 
mice [117]. As in the case of breast CSCs and GIST 
CSCs [117, 141, 143, 147], salinomycin is able to 
enhance in regular cancer cells the cytotoxic effects of 

conventional cancer drugs, such as doxorubicin, 
etoposide, paclitaxel, docetaxel, vinblastin and 
trastuzumab [147-149], envisioning a central role for 
salinomycin-based combination therapies in the future 
treatment of cancer [121]. 

Although the exact mechanisms underlying the 
elimination of CSCs by salinomycin remain poorly 
understood, recent work has contributed to an 

increased understanding of some modes of action of 
salinomycin in CSCs and cancer cells. It has been 
shown that salinomycin induces apoptosis in CSCs of 
different origin [16, 116, 141, 169], but the particular 
mechanisms of apoptosis induction by salinomycin in 
CSCs remain unclear and may differ among the cell 

type, as demonstrated for regular cancer cells [138, 
140, 148, 149]. It is also evident that salinomycin is 
refractory to the action of ABC transporters since 
salinomycin is able to overcome ABC transporter-
mediated multidrug resistance in AML SCs [16]. 
Moreover, salinomycin has been demonstrated to be a 

potent inhibitor of the ABC transporter P-
glycoprotein/MDR1 in different cancer cells [172, 173]. 
Next, salinomycin has been shown to inhibit in chronic 

lymphocytic leukemia cells proximal Wnt signaling by 
reducing the levels of the Wnt co-receptor LRP6 and by 
down-regulating the expression of the Wnt target genes 
LEF1, cyclin D1 and fibronectin, finally leading to 
apoptosis [139]. Most cancer cells rely more on aerobic 

glycolysis than on oxidative phosphorylation (the 
Warburg effect, Ref. 174), but, for instance, malignant 
transformation of human mesenchymal stem cells is 
linked to an increase of oxidative phosphorylation 
[175], and glioma CSCs have been shown to mainly 
rely on oxidative phosphorylation [176, 177]. In this 

context, salinomycin has been shown to inhibit 
oxidative phosphorylation in mitochondria [156] that 
may contribute to the elimination of CSCs by 
salinomycin. Salinomycin is a K+ ionophore that 
interferes with transmembrane K+ potential and 
promotes the efflux of K+ from mitochondria and 

cytoplasm [155, 156]. Expression of K+ channels has 
been documented in CD34+/CD38- AML SCs and in 
CD133+ neuroblastoma CSCs, but not in their non-
tumorigenic counterparts [178, 179]. Moreover, a 
decrease in intracellular K+ concentration by 
pharmacological induction of K+ efflux is directly linked 

to the induction of apoptosis in cancer cells [180, 181], 
suggesting that mitochondrial and cytoplasmic K+ efflux 
induced by salinomycin leads to apoptosis in CSCs. 
Finally, salinomycin is able to promote differentiation of 
CSCs and to induce epithelial reprogramming of cells 
that had undergone EMT [142, 143]. This is in concert 

 

Figure 1: Salinomycin does not permit long-term adaptation and development of resistance of KG-1a AML SCs to apoptosis-
inducing concentrations of salinomycin (Sal, 10 μM), whereas the cells could be readily adapted to survive and to proliferate in 
the presence of initially apoptosis-inducing concentrations of doxorubicin (Dox, 0.5 μg/ml) and bortezomib (Bor, 12.5nM). After 
12 weeks of culturing in the presence of 12.5 nM Bor, 0.5 μg/ml Dox, 10 μM Sal or DMSO 5% (v/v), proliferation of the cells was 
determined by [3H] thymidine incorporation for 24 h. White bars: KG-1a AML SCs; grey bars: KG-1a AML cells; black bars: KG-1 
AML cells. Inserts show invert microscopic pictures (400x) of KG-1a AML SCs cultured for 12 weeks in the presence of the 
drugs noted below. Size bars are 50 μm. 

Adapted from [16], with permission from Elsevier B.V. 
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with the finding that salinomycin up-regulates the 
expression of genes involved in mammary epithelial 

differentiation [142]. Thus, salinomycin might target and 
eliminate CSCs by multiple mechanisms of which only 
a few are currently known. Future research may 
uncover an increasing number of relevant mechanisms 
of targeting CSCs by salinomycin. 

4.1.2. 3-O-Methylfunicone 

3-O-methylfunicone (OMF) is a secondary 
metabolite produced by the soil fungus Penicillium 

pinophilum [182] and by an Australian sea salt fungus 
[183]. The compound is a fungitoxic pyrone that inhibits 

the growth of various phytopathogenic fungi and the 
activities of mammalian Y-family DNA polymerases 
[182, 183]. OMF has been shown to induce cell cycle 
arrest and apoptosis in human melanoma and cervical 
cancer cells [184, 185] and to affect proliferation and 
motility of breast cancer cells that is accompanied by 

down-regulation of v 5 integrin and matrix 
metalloproteinase-9 and by inhibition of survivin and 
human telomerase reverse transcriptase (hTERT) gene 
expression [186]. Similar results have been obtained in 
human mesothelioma cells exposed to OMF or to OMF 
combined with cisplatin [187]. 

Recently, OMF has been shown to selectively 
deplete breast CSCs present in the human breast 

cancer cell line MCF-7 [188]. It was demonstrated that 
OMF treatment of MCF-7-derived tumorspheres 
markedly reduced the number and size of the 
tumorspheres, and pretreatment of MCF-7 cells with 
OMF abrogated the ability of the cells to form 
tumorspheres. In contrast to cisplatin, OMF was 

capable of eliminating breast CSCs from the MCF-7-
derived tumorspheres via induction of apoptosis that 
resulted in the complete disappearance of breast CSCs 
expressing the stemness markers CD24, CD29 CD44, 
CD133 and CD338. Finally, OMF treatment of MCF-7-
derived tumorsphere cells resulted in the down-

regulation of survivin, hTERT and Nanog gene 
expression, pointing out that OMF affects expression of 
genes critical for maintenance and survival of CSCs 
[188].  

4.2. Plant-Derived Compounds/Phytochemicals 

4.2.1. Parthenolide 

Parthenolide is a nucleophilic sequiterpene lactone 
isolated from the flowerheads and leaves of feverfew 
(Tanacetum parthenium) [189]. Partenolide inhibits the 
activation and nuclear translocation of transcription 

factor NF- B by directly binding to I B kinase, thereby 
preventing I B kinase-mediated phosphorylation and 

subsequent proteasomal degradation of the NF- B 
inhibitor I B [190, 191]. Because NF- B is a master 
transcription factor for inflammatory gene expression 
and an important player in the development, 
maintenance and progression of cancer [192-194], it is 
obvious that parthenolide exhibits significant anti-
inflammatory and anti-cancer activities [195, 196]. 

Of note, parthenolide was the first compound 

discovered to selectively target human CSCs. In a 
seminal study, Guzman, Jordan and coworkers 
demonstrated that parthenolide induces apoptosis in 
human CD34+ CD38- AML SCs, but not in normal 
CD34+ hematopoietic stem and progenitor cells [197]. 
By contrast, cytosine arabinoside, the standard drug 

used for AML therapy, failed to induce significant 
apoptosis in AML SCs. Parthenolide-induced apoptosis 
of AML SCs is associated with inhibition of NF- B 
activity, proapoptotic activation of tumor suppressor 
protein p53 and generation of reactive oxygen species 
[197]. In fuctional terms, parthenolide strongly reduces 

the ability of AML SCs to engraft in NOD/SCID mice 
but does not affect the activity of normal hematopoietic 
stem and progenitor cells to differentiate into myeloid or 
lymphoid lineages [197]. Similar results were obtained 
using the orally bioavailable parthenolide analog 
dimethylamino-parthenolide [198]. Not only AML SCs, 

but also human prostate CSCs, myeloma CSCs, 
osteosarcoma CSCs and breast CSCs have recently 
been shown to be a target for parthenolide, as 
demonstrated in vitro [199-201] and in xenograft mice 
[46, 202]. In addition to its ability to inhibit NF- B, 
parthenolide has been shown in prostate CSCs to 

target the non-receptor tyrosine kinase src and its 
downstream signaling components as well as a variety 
of transcription factors critical for initiation, progression 
and metastasis of prostate cancer [202]. As a 
consequence of the promising activity of parthenolide 
and its analogs against AML SCs and primary AML 

cells [197, 198], a novel dimethylamino-parthenolide 
termed LC-1 was recently developed and is currently in 
a phase I clinical trial for the treatment of patients with 
AML [203, 204]. 

4.2.2. Cyclopamine 

The steroidal alkaloid cyclopamine (11-
deoxojervine) isolated from California corn lily 
(Veratrum californicum) has both teratogenic and 
antitumor activities arising from its ability to inhibit 
cellular responses to vertebrate Hedgehog signaling 
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[205, 206]. Cyclopamine directly binds to the 
heptameric bundle of smoothened (Smo), a 

transmembrane serpentine receptor of the proximal 
Hedgehog signaling pathway [126, 207]. The 
Hedgehog pathway is a major regulator of many 
fundamental processes in vertebrate embryonic 
development, including stem cell maintenance, cell 
differentiation, tissue polarity and cell proliferation 

[208], and constitutive or inappropriate activation of the 
Hedgehog pathway is observed in a wide variety of 
human cancers [209].  

Recent findings suggest that the Hedgehog 
pathway regulates the maintenance and proliferation of 
CSCs and promotes carcinogenesis and tumor 
invasiveness [20, 210]. A number of recent studies 
have shown that inhibition of the proximal Hedgehog 

signaling pathway by cyclopamine can eliminate CSCs 
in vitro and in xenograft mice. In particular, expression 
of the Hedgehog target transcription factor Gli1 is 
markedly decreased in human glioblastoma CSCs in 
response to treatment with cyclopamine [211], and 
formation of tumorspheres initiated by glioblastoma 

CSCs is completely inhibited by cyclopamine [211, 
212], whereas radiation of the tumorspheres results in 
an enrichment of glioblastoma CSCs [211]. Importantly, 
human glioblastoma CSCs pretreated with cyclopamine 
are no longer able to establish intracerebral 
glioblastoma tumors in mice [211, 212], demonstrating 

that the Hedgehog signaling pathway is essential for 
CSC-driven glioblastoma tumorigenesis, which can be 
effectively blocked by the Hedgehog inhibitor 
cylopamine. The Hedgehog signaling pathway is also 
essential for the maintenance and self-renewal of 
CSCs in multiple myeloma (MM) and chronic myeloid 

leukemia (CML), as demonstrated by the ability of 
cyclopamine to inhibit the growth of MM and CML SCs 
in vitro [22, 213, 214] and to eradicate human CML 
SCs and drug-resistant CML cells in xenograft mice 
[22, 214]. In addition, cyclopamine has recently been 
shown to eliminate in vitro gastric, hepatoma and 

prostate CSCs [44, 215, 216] and to inhibit in mice the 
tumorigenicity of human breast CSCs [217]. Because 
cyclopamine has low affinity for Smo and displays poor 
oral bioavailability, suboptimal pharmacokinetics and 
low metabolic stability, IPI-926, a semisynthetic 
cyclopamine analog with improved potency, oral 

bioavailability and a favorable pharmacokinetic profile 
relative to cyclopamine was designed and synthesized 
[218]. IPI-926 (saridegib) has been demonstrated to 
inhibit self-renewal in B-cell acute lymphocytic 
leukemia SCs [219] and to increase vascularization-

mediated gemcitabine delivery and disease 
stabilization in xenograft mice with gemcitabine-

resistant human pancreatic cancer [220]. IPI-926 is 
currently in a phase I clinical trial in patients with 
advanced solid tumors (http://www.cancer.gov/ 
clinicaltrials).  

4.2.3. Epigallocatechin-3-Gallate (EGCG)  

Epigallocatechin-3-gallate (EGCG) is the major and 
most abundant catechin in green tea, a commonly 
consumed beverage derived from the dried leaves of 
the plant Camellia sinensis [221, 222]. Chemically, 
EGCG belongs to the large family of plant-derived 

polyphenols and constitutes a powerful radical 
scavenger that exhibits strong antioxidant activities due 
to the presence of phenolic groups that are sensitive to 
oxidation and that can generate quinones [222, 223]. 
EGCG and related green tea polyphenols have been 
demonstrated to inhibit carcinogenesis by affecting a 

wide array of signal transduction pathways in 
premalignant and malignant cells, to induce apoptosis 
and cell cycle arrest selectively in cancer cells and to 
inhibit epigenetic modifications, angiogenesis, 
carcinogenesis and metastasis in mice [221, 222, 224]. 
Moreover, EGCG can alter microRNA (miR) expression 

profiles leading to inhibition of cancer cell growth, 
reversal of EMT and enhancement of the efficacy of 
conventional anticancer drugs [225, 226]. A large 
number of studies in animals as well as epidemiologic 
and case-control studies in humans reveal that long-
term green tea consumption or oral administration of 

EGCG significantly reduces the incidence of various 
cancers [221, 227], pointing out a pivotal role for EGCG 
in the chemoprevention of cancer. 

In CSCs isolated from human prostate cancer cell 
lines and primary prostate tumors, EGCG inhibits the 
self-renewal capacity and induces caspase-dependent 
apoptosis of CD44+ CD133+ prostate CSCs, as 
determined in tumorsphere assays [228]. Furthermore, 

EGCG has been shown to inhibit in prostate CSCs the 
expression of anti-apoptotic proteins, such as Bcl-2, 
survivin and XIAP, and, most notably, EGCG was able 
to inhibit EMT of the cells, as demonstrated by the 
inhibition of expression of the EMT-associated proteins 
vimentin, nuclear -catenin, Slug and Snail [228]. In a 

follow-up study, similar results were obtained in 
pancreatic CSCs. It was shown that EGCG inhibits in 
pancreatic CSCs the pluripotency-maintaining 
transcription factors Nanog, c-Myc and Oct4 as well as 
key signaling components of the Hedgehog pathway, 
including Smo, Patched, Gli1 and Gli2 [229], finally 
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suggesting that EGCG is capable of inhibiting multiple 
specific components and pathways in CSCs. EGCG 

and green tea extracts are currently in phase I-II clinical 
trials in patients with metastatic prostate cancer, small 
cell lung cancer and advanced solid tumors 
(http://www.cancer.gov/clinicaltrials). Very recently, 
synthetic analogs of EGCG have been developed that 
display a more potent activation of adenosine 

monophosphate-activated protein kinase (AMPK) than 
EGCG or metformin (see below). Activation of AMPK 
by these EGCG analogs resulted in inhibition of cell 
proliferation, up-regulation of the cyclin-dependent 
kinase inhibitor p21, down-regulation of the mTOR 
pathway, and elimination of stem cell populations in 
human breast cancer cells [230]. 

4.2.4. Resveratrol 

Resveratrol (3,5,4´-trihydroxystilbene) is a 
stilbenoid, a type of a natural polyphenol that is found 

in highest concentration in the skins of red wine grapes 
(Vitis vinifera), in red wine and in sprouted peanuts 
(Arachis hypogaea). The compound shows diverse 
biochemical activities, including anti-inflammatory, anti-
oxidative, anti-proliferative and cancer 
chemopreventive effects [231, 232]. Experimental 

studies have demonstrated that resveratrol inhibits the 
growth of various cancer cells by induction of cell cycle 
arrest, apoptosis, autophagy and mitotic catastrophe 
[231, 233], and, like other phytochemicals and natural 
agents such as EGCG and curcumin, resveratrol 
interferes with the Wnt and Hedgehog signaling 

pathways and modulates the expression profiles of 
miRs [225, 234].  

It was recently shown that resveratrol inhibits 
proliferation and exhibits selective cytotoxicity in CSCs 
enriched from human medulloblastoma cells and breast 
cancer cells [235, 236]. In CSCs derived from human 
glioblastoma cells, resveratrol is able to promote glial-
like and neuronal-like differentiation [237] and to induce 

cell cycle arrest, autophagy, apoptosis and inhibition of 
tumorsphere formation of the cells [238]. Moreover, in 
pancreatic CSCs derived from human primary tumors, 
resveratrol induces apoptosis, inhibits EMT, reverses 
multi-drug resistance and suppresses the self-renewal 
capacity of the cells that is accompanied by the 

modulation of expression of key regulatory proteins, 
such as Bcl-2, XIAP, Zeb-1, Slug, Snail, ABCG2, 
Nanog, Sox-2, c-Myc and Oct4 [239]. These multiple 
effects of resveratrol against pancreatic CSCs finally 
lead to the inhibition of the development and growth of 
pancreatic cancer in KrasG12D mice prone to 

spontaneously develop invasive and metastatic 
pancreatic ductal adenocarcinoma [239]. Resveratrol 

has recently been shown to modulate the expression 
profiles of miRs that regulate the expression of tumor 
suppressors or oncogenic proteins. In particular, levels 
of tumor suppressive miRs, such as miR-622 and miR-
633 are up-regulated, while several oncogenic miRs 
targeting effectors of the TGF  signaling pathway are 

down-regulated by resveratrol in cancer cells [240-
242], providing a mechanistic basis for the anti-cancer 
activity of resveratrol. To date several clinical studies 
are underway to evaluate the efficacy of resveratrol in 
cancer prevention [243]. Data from one of such study 
have shown that resveratrol can prevent the 

development of colon cancer by inhibiting Wnt pathway 
target gene expression in colonic mucosa [244].  

4.2.5. Curcumin  

The rhizomes of the Indian spice plant turmeric 

(Curcuma longa) contain high concentrations of the 
natural polyphenol curcumin, which is known to exhibit 
anti-cancer and chemopreventive activities in humans 
[245-247]. As revealed by molecular interaction 
studies, curcumin displays pleiotropic biochemical 
activities, such as anti-carcinogenic, anti-angiogenic, 

anti-microbial, anti-viral, anti-inflammatory, anti-oxidant, 
pro-apoptotic, chemosensitization, radiosensitization 
and immunomodulatory activities [248-249]. The 
underlying mechanisms of these activities involve the 
binding of curcumin to a variety of biomolecules and 
the regulation of multiple molecular targets, including 

transcription factors, signaling proteins, growth factors, 
adhesion molecules, cell cycle regulatory proteins, 
carrier proteins, protein kinases, inflammatory 
cytokines, chemokines and their receptors, matrix 
metalloproteinases, metal ions, miRs and proteasomes 
that may provide a pharmacological basis for a multi-
targeted cancer therapy [225, 234, 248-250].  

Initial studies using rat C6 glioma cells revealed that 

curcumin is able to inhibit the viability and growth of 
glioma CSCs sorted from C6 cells by virtue of the 
ability to exclude the DNA binding dye Hoechst 33346, 
a hallmark of cancer stem-like cells belonging to the so 
called side population [251]. A more extended study 
subsequently showed that curcumin promotes, in vitro 

and in xenograft mice, differentiation of glioblastoma 
CSCs by inducing autophagy [252]. In response to 
treatment with curcumin, glioblastoma CSCs obtained 
from surgically resected human glioblastomas 
expressed high levels of differentiation markers (Tuj1, 
GFAP, Olg2 and III-tubulin) and low levels of neural 
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stem/progenitor markers (CD133 and Nestin) [252]. 
Curcumin treatment also decreased the amount and 

size of newly formed tumorspheres and the total 
number of cells in a clonogenic survival assay, 
indicating that curcumin represses self-renewal of 
glioblastoma CSCs. In vitro and in intracranial 
xenograft tumors in mice, curcumin was able to induce 
autophagy of glioblastoma cells that occurred as a 

terminal event of differentiation of the cells. Finally, 
mice bearing intracranial glioblastoma xenografts 
induced by human glioblastoma CSCs showed 
intracerebral tumor regression and increased overall 
survival in response to curcumin treatment, suggesting 
significant therapeutic potential of curcumin in 

glioblastoma [252]. Moreover, curcumin inhibits self-
renewal of breast CSCs isolated from human MCF-7 
breast cancer cells, as demonstrated by the inhibition 
of tumorsphere formation of breast CSCs treated with 
curcumin that was accompagnied by inhibition of the 
Wnt signaling pathway in the cells [253]. Curcumin has 

also been shown to eliminate colon CSCs generated by 
continuous exposure of human colon cancer cells to 5-
fluoruracil and oxaliplatin (FOLFOX), a 
chemotherapeutic regime commonly used for the 
treatment of colon cancer [254]. However, the 
combination of curcumin and dasatinib, a tyrosine 

kinase inhibitor used for the therapy of CML and 
advanced colon carcinoma, was more effective in 
eliminating FOLFOX-resistant colon CSCs than the 
single agent [150].  

Because of the low bioavailability of curcumin [248], 
orally available curcumin analogs with improved 
bioavailability, such as GO-Y030, GO-YY078 and 
diflourinated curcumin (CDF) have been synthesized 

recently [255-257]. The curcumin analog GO-Y030 has 
been shown to inhibit colorectal carcinogenesis in mice 
harboring a germ-line mutation of adenomatous 
polyposis coli (APC) [255]. GO-Y030 also eliminates 
human colon CSCs and tumor growth in xenograft mice 
[258]. Similar results were obtained using the curcumin 

analog CDF in human pancreatic CSCs and in human 
pancreatic cancer xenograft mice [256, 259].  

In view of these promising results, a number of 
clinical studies showing a significant anti-cancer effect 
of curcumin alone or in combination with conventional 
cytostatic drugs have been conducted in patients with 
advanced pancreatic and breast cancer [110, 111, 113, 
260]. Of note, a recently conducted phase IIa clinical 

trial reveals that curcumin can prevent the development 
of colorectal cancer [247]. 

4.2.6. Sulforaphane 

The anticarcinogenic activities of sulforaphane, a 
natural isothiocyanate found in broccoli (Brassica 

oleracea italica), have been detected on the basis of its 

ability to induce phase II detoxication enzymes, such 
as quinone reductase and glutathione S-transferase in 
mouse hepatoma cells, and to prevent the formation of 
mammary tumors in rats [261]. Subsequently, it was 
demonstrated that sulforaphane specifically binds to 
transcriptionally active c-Rel-containing NF- B 

complexes and inhibits NF- B-mediated antiapoptotic 
signaling in human CD24+ CD44- pancreatic CSCs, 
thereby inducing apoptosis and preventing clonogenic 
growth and tumorsphere formation of the cells [262]. In 
human pancreatic cancer xenograft mice, 
sulphoraphane treatment markedly blocked tumor 

growth and angiogenesis that was further enhanced by 
additional treatment with tumor necrosis factor related 
apoptosis inducing ligand (TRAIL) [262]. Similar results 
were obtained in a study using breast CSCs sorted 
from human breast cancer cell lines [263]. In this study, 
sulforaphane was able to inhibit breast CSC 

tumorsphere formation, to deplete human breast CSCs 
in xenograft mice, and to abrogate tumor growth after 
the reimplantation of tumor cells from sulforaphane-
treated mice into secondary mice. As also shown for 
salinomycin and oxymatrine (see 4.2.7) in other studies 
[139, 264, 265], sulforaphane down-regulated in human 

breast CSCs the Wnt/ -catenin signaling pathway 
[263], which is essential for survival, self-renewal and 
therapy resistance of human CSCs [20, 21]. 
Interestingly, sulforaphane acts synergistically with the 
multikinase inhibitors sorafenib and imatinib, the plant-
derived flavonoid quercetin or with convetional 

cytostatic drugs, such as cisplatin, gemcitabine, 
doxorubicin and 5-fluorouracil to eliminate pancreatic, 
prostate and leukemia CSCs in vitro and to inhibit 
initiation and growth of human pancreatic cancer in 
xenograft mice [151, 152, 266, 267]. Similar synergistic 
effects have been observed for the combination of 

salinomycin and imatinib [143], salinomycin and 
doxorubicin [141], and curcumin and dasatinib [150], 
suggesting that agents targeting CSCs have the 
potential to act synergistically with conventional 
chemotherapeutic drugs and novel tumor-targeted 
drugs. 

4.2.7. Oxymatrine 

Oxymatrine is a quinolizidine alkaloid found in the 
dried roots of the small tree Sophora flavescens. 

Besides oxymatrine, the roots of Sophora flavescens 
(Chinese: Ku shen) contain other bioactive 
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quinolizidine alkaloids, including matrine, sophoridine, 
sophocarpine, aloperine and cytosine [268]. Extracts of 

Ku shen have been used for centuries in traditional 
Chinese medicine as herbal formulations for the 
treatment of cancer, liver and skin disorders, cardiac 
arrhythmia, leukopenia and bronchitis [269]. 
Oxymatrine has recently been shown to induce 
apoptosis, cell cycle arrest, and the generation of 

reactive oxygen species in a variety of human cancer 
cells, including colon cancer, melanoma and pancreatic 
cancer cells [270-272]. Subsequent studies revealed 
that oxymatrine eliminates human breast CSCs by 
down-regulating the Wnt/ -catenin signaling pathway 
[264, 265]. In particular, oxymatrine was able to 

eliminate breast CSCs sorted from human MCF-7 
breast cancer cells and to inhibit the expression of the 
main genes of the Wnt/ -catenin pathway ( -catenin, 
cyclin D1 and c-myc) in the cells [264, 265]. In contrast 
to the chemotherapeutic drug cisplatin, oxymatrine 
induced significant regression of human MCF-7 breast 

cancers in xenograft mice that was accompanied by 
the down-regulation of expression of key signaling 
proteins of theWnt/ -catenin pathway (Wnt1, -catenin, 
c-Myc, Cyclin D1, LEF1 and TCF4), indicating that 
oxymatrine eradicates breast CSCs by targeting the 
Wnt/ -catenin signaling pathway [265].  

4.3. Small-Molecule Inhibitors 

4.3.1. Vismodegib (GDC-0449)  

Vismodegib (GDC-0449) is a synthetic low-
moelcular weight Hedgehog pathway inhibitor that acts 
as a receptor antagonist of smoothened (Smo), a 

serpentine receptor of the proximal Hedgehog signaling 
pathway [125, 209, 273]. 

The orally bioavailable compound, which has been 
developed and optimized by high-throughput screening 
[273], is structurally unrelated to other Smo inhibitors, 
such as cyclopamine and IPI-926 (see 4.2.2.) and has 
been demonstrated to be ~10 times more potent than 
cyclopamine at inhibiting Hedgehog pathway activity 

[274]. Vismodegib effectively eliminates mouse 
medulloblastoma and hepatocellular carcinoma [273-
275] as well as human pancreatic and colon cancers in 
xenograft mice [276].  

These findings rapidly led to the initiation of clinical 
trials with vismodegib in patients with cancers 
exhibiting constitutive up-regulation of the Hedgehog 
signaling pathway as a result of mutations in the 

Patched 1 or Smo gene [125, 209]. Such mutations are 
found in patients with Gorlin´s syndrome that have a 

marked susceptibility to develop basal cell carcinomas 
(BCC) and medulloblastomas [125, 209]. Accordingly, 

two phase I studies revealed that vismodegib has 
encouraging antitumor activity in patients with BCC and 
advanced solid tumors refractory to current therapies 
[277, 278]. Vismodegib is currently undergoing phase II 
clinical trials for the treatment of advanced BCC, 
medulloblastoma, glioblastoma multiforme, 

chondrosarcoma, and ovarian, pancreatic, gastric, 
lung, breast and colorectal cancer [125, 279], 
(http://www.cancer.gov/clinicaltrials).  

As in the case of the Smo/Hedgehog signaling 
pathway inhibitor cyclopamine and its analog IPI-926 
(see 4.2.2.), vismodegib is able to target CSCs [280, 
281]. In pancreatic CSCs derived from human primary 
tumors, vismodegib has recently been shown to inhibit 

cell viability and to induce apoptosis that is 
accompanied by caspase-3 activation, PARP cleavage, 
expression of the death receptors Fas, DR4 (TRAIL-
R1) and DR5 (TRAIL-R2), and by down-regulation of 
Bcl-2 expression [280]. Moreover, vismodegib inhibited 
the expression of the Hedgehog pathway receptors 

Patched 1, Patched 2 and Smo in pancreatic CSCs. It 
was also demonstrated that human pancreatic CSCs 
require the activity of the Hedgehog pathway 
transcription factors Gli1 and Gli2 for sustained 
expression of genes critical for cell survival and 
proliferation. However, vismodegib inhibited nuclear 

translocation, DNA binding and transcriptional activity 
of Gli1 and Gli2 in pancreatic CSCs, indicating that 
vismodegib targets pancreatic CSCs by inhibiting 
various components of the Hedgehog signaling 
pathway [280]. Vismodegib has also been shown to 
inhibit cell growth of human lung adenocarcinoma cells 

and small cell lung carcinoma cells, but Smo, the 
molecular target of vismodegib, is not expressed in 
these cells [281]. By contrast, cancer stem-like cells 
(side population) sorted from the lung cancer cells 
markedly express Smo and are effectively eliminated 
by vismodegib [281], suggesting that the anticancer 

activity of vismodegib in lung cancer is mediated by 
selective targeting lung CSCs. 

4.3.2. Repertaxin  

Repertaxin is a small-molecule noncompetitive 

allosteric inhibitor of CXCR1 (interleukin-8 receptor- ) 
and CXCR2 (interleukin-8 receptor- ), which both play 
a major role in mediating interleukin-8-dependent 
chemotaxis and migration of polymorphonuclear 
leukocytes, T lymphocytes and natural killer cells [282, 
283]. By inhibiting interleukin-8-mediated activities, 
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such as recruitment and activation of leukocytes in 
inflammatory sites, repertaxin is able to attenuate 

ischemic organ damages and reperfusion injury in 
rodents [282, 284].  

A recent study revealed that CXCR1 blockade by 
repertaxin selectively targets human breast CSCs in 

vitro and in xenograft mice [124]. Repertaxin was able 
to selectively deplete the CSC population in human 
breast cancer cells and to markedly decrease the 
ability of breast CSCs to form tumorspheres. The 

significant decrease of breast CSC viability induced by 
repertaxin was mediated by Fas/Fas ligand-induced 
apoptosis and by interference with the 
FAK/Akt/FOXO3A survival pathway, which is critical for 
the maintainenance and viability of CSCs [124]. In 
contrast to the chemotherapeutic drug docetaxel, 

repertaxin was able to eliminate the CSC population in 
human breast cancer xenograft mice, leading to the 
reduction of both tumor growth and systemic 
metastasis [124]. In view of more recent data showing 
that IL-8 can promote EMT, tumor growth, 
angiogenesis, metastasis and chemotherapeutic drug 

resistance [285, 286], targeting IL-8- and CXCR1-
mediated regulatory pathways by repertaxin may 
represent a promising strategy to eliminate breast 
CSCs. 

4.4. Classical Drugs 

4.4.1. Metformin 

Metformin (dimethylbiguanide) is a biguanide 
developed from galegine, a guanidine derivate found in 
the plant French lilac (Galega officinalis) [287]. 
Metformin constitutes an oral anti-diabetic drug of the 
biguanide class that is used for decades as the most 

effective drug in the first-line treatment of type 2 
diabetes mellitus [288]. The drug displays a variety of 
biological and biochemical activities, including 
improvement of hyperglycemia by suppressing hepatic 
gluconeogenesis, reduction of circulating insulin levels, 
activation of adenosine monophosphate-activated 

protein kinase (AMPK), inhibition of insulin-like growth 
factor (IGF) and PI3K/Akt signaling activities, 
suppression of HER2 (erbB-2) oncoprotein 
overexpression, inhibition of several protein kinases 
and receptor tyrosine kinases, inhibition of the 
mammalian target of rapamycin (mTOR) pathway and 

its downstream effectors, the ability to reverse EMT, 
and activation of an atypical protein kinase C-CBC 
pathway resulting in mammalian embryonic and adult 
neurogenesis [133, 289-294].  

In human cancer cells of different origin, metformin 
has been shown to induce cell cycle arrest, growth 

inhibition and apoptosis through interfering with various 
signaling pathways [295-298]. Moreover, metformin 
inhibits tumor growth of human colon, prostate, breast 
and lung cancer in xenograft mice [295, 297, 299, 300]. 
Epidemiological studies reveal that metformin 
significantly reduces cancer incidence and improves 

cancer survival in patients with type 2 diabetes [301, 
302], indicating that metformin is a potent anti-cancer 
and chemopreventive drug.  

As demonstrated in a number of recent studies, 
metformin is able to selectively target CSCs in different 
types of human cancers, including breast [90, 130, 131, 
303, 304], pancreatic [305] and thyroid cancer [306]. In 
particular, metformin has been shown to selectively kill 

CSCs in four genetically different types of human 
breast cancer, to inhibit tumorsphere formation of the 
breast CSCs and to reduce tumor growth and relapse 
in human breast cancer xenograft mice [130]. In human 
basal-like breast cancer cells naturally enriched for 
CD44high/CD24low CSC populations, metformin 

significantly reduced the proportion of CD44high/CD24low 

cells and transcriptionally repressed the expression of 
EMT-related gene products, such as the transcription 
factors ZEB1, TWIST1 and Slug and the pleiotropic 
cytokines TGF 1-3, thereby repressing the activation 
of the genetic EMT program in breast CSCs [303]. In 

trastuzumab-resistant human breast CSCs, metformin 
suppresses self-renewal and proliferation, as 
demonstrated by suppression of tumorsphere formation 
in response to metformin treatment. Interestingly, 
metformin was able to overcome trastuzumab 
resistance and to synergistically interact with 

trastuzumab to more effectively suppress self-renewal 
and proliferation of the cells in vitro [131]. A 
subsequent study shows that metformin induces 
marked tumor regression in xenograft mice with human 
primary trastuzumab-resistant HER2+ breast cancer. In 
this xenograft model, metformin was able to overcome 

primary resistance to trastuzumab in HER2+ human 
breast cancer by selectively killing CD44+/CD24-/low 
breast CSCs [90]. Metformin has also been shown to 
overcome the resistance to radiation of human MCF-7 
breast cancer cell-derived CSCs [307]. In MCF-7-
derived CD44high/CD24low CSCs, which display 

increased tumorsphere formation and expression of the 
stem cell marker Oct4 in response to treatment with17-

-estradiol, metformin was able to inhibit self-renewal 
and proliferation of the cells [304]. Moreover, metformin 
inhibited 17- -estradiol-induced expression of Oct4 in 
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the CD44high/CD24low breast CSCs, finally leading to the 
inhibition of tumorsphere formation [304]. A recent 

study elegantly demonstrates that metformin targets 
human pancreatic CSCs by interfering with the 
expression of key transcription factors of essential self-
renewal and maintenance programs of embryonic stem 
cells and CSCs, including Notch-1, Nanog, Oct4 and 
EZH2 [305]. It was demonstrated that metformin 

decreased the mRNA levels of these transcription 
factors in pancreatic CSCs and simultaneously caused 
the re-expression of miRs of the let-7 and miR-200 
family, which are typically lost in pancreatic CSCs, 
leading to the maintenance of the CSC state. These 
abilities of metformin to directly modulate the levels of 

key regulators of CSCs function may result in the 
inhibition of self-renewal, proliferation, migration and 
invasion of pancreatic CSCs, as demonstrated in the 
study [305]. Finally, metformin has recently been 
shown to suppress self-renewal of human thyroid 
cancer stem-like cells and to kill thyroid CSCs derived 

from doxorubicin-resistant and Oct4-expressing thyroid 
cancer cells [306], indicating that metformin is able to 
target CSCs in different types of human cancers. All 
these promising result have ultimately led to the 
initiation of phase I-III clinical trials with metformin 
alone or in combination with conventional 

chemotherapeutic drugs in patients with breast cancer 
[112, 308] and various other solid tumors [115, 133], 
(http://www.cancer.gov/clinicaltrials). 

4.4.2. Tranilast 

Tranilast [N-(3´,4´-dimethoxycinnamoyl)-anthranilic 
acid] is a synthetic cinnamoyl anthranilate that has 
been in clinical use in Japan since 1982 for the 
treatment of allergic and fibrotic diseases [309-311]. Its 
safety, tolerability and efficacy in the treatment of 
allergic rhinits, bronchial asthma, atopic dermatitis, 

coronary restenosis and various fibrotic diseases has 
been studied in several thousand patients receiving up 
to 600 mg/day for months [309, 310]. The drug exhibits 
various mechanisms of action, including inhibition of 
mast cell and basophil degranulation, inhibition of 
collagen synthesis, inhibition of TGF-  production and 

receptor expression, inhibition of Smad2 and ERK 
phosphorylation, inhibition of synthesis of IL-6, IL-12, 
IFN-  and PGE2, and antagonization of the effects of 
VEGF [310, 311]. 

It was early shown that tranilast inhibits the 
proliferation of human malignant glioma cells in vitro 
and of rat gliomas in vivo by reducing the expression 
and release of TGF-  [312]. In addition, recent studies 

demonstrate marked anti-cancer activities of transilast 
in breast and prostate cancer cells in vitro and in mice 

[313-315]. Of note, data from a clinical pilot study 
indicate that tranilast improves prognosis and survival 
of patients with advanced prostate cancer [316]. 

Tranilast is also able to inhibit tumorsphere 
formation of human breast CSCs isolated from highly 
aggressive mitoxantrone-resistant triple negative 
(estrogen receptor negative, progesterone receptor 
negative, and HER2 negative) or triple positive breast 

cancer cells [134], (Figure 2). Inhibition of tumorsphere 
formation by tranilast is acompagnied by decreased 
retinoblastoma protein phosphorylation and decreased 
expression of the stem cell markers Oct4 and CD133. 
Tranilast is also effective in vivo since it prevents lung 
metastasis in xenograft mice injected with human 

mitoxantrone-resistant triple negative breast cancer 
cells [134]. Finally, the study revealed that tranilast is 
an agonist of the aryl hydrocarbon receptor (AHR), 
which is expressed in breast CSCs and which mediates 
the anti-proliferative and anti-CSCs activities of tranilast 
[134]. These data may indicate that tranilast as an 

established and safe drug can be used as an agent 
against breast CSCs and aggressive breast cancer in 
clinical situations. 

4.4.3. Thioridazine 

The antipsychotic drug thioridazine (10-[2-(1-
methyl-2-piperidy) ethyl]-2-methylthiophenothiazine) is 
a piperidine phenothiazine that acts as a dopamine D2 
receptor antagonist and that has been used for 
decades for the treatment of schizophrenia and other 
psychosis [317, 318]. It was early shown that 

thioridazine inhibits proliferation and overcomes 
cytostatic drug resistance of human breast cancer cells 
[319, 320], and recent studies reveal that thioridazine 
induces cell cycle arrest and apoptosis in human 
cancer cells by targeting the PI3K/Akt/mTOR pathway 
[321, 322]. Notably, schizophrenic patients treated with 

dopamine receptor antagonists such as thioridazine 
were reported to have a reduced incidence of 
colorectal and prostate cancer compared to the general 
population [323], suggesting a chemopreventive role 
for thioridazine and other dopamine antagonists. 

As elegantly demonstrated in a recent study, 
thiorodazine is capable of targeting neoplasic human 
pluripotent stem cells (hPSCs) derived from human 

embryonic stem cells as well as targeting human AML 
SCs [135]. In particular, thioridazine induces 
differentiation of neoplastic hPSCs by down-regulation 
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of Oct4 expression and up-regulation of the expression 
of various differentiation-associated genes. In 
hematopoietic colony forming assays, thioridazine 

selectively eliminates human AML blasts expressing 
dopamine D2 receptors, but does not affect normal 
human hematopoietic stem and progenitor cells, which 
lack expression of dopamine D2 receptors [135]. 
Thioridazine significantly eliminates human AML SCs, 
but does not affect normal hematopoiesis sustained by 

human hematopoietic stem and progenitor cells in 
xenograft mice [135]. Because thioridazine exerts its 
anti-CSC activity via antagonism of D2-family 
dopamine receptors expressed on neoplastic hPSCs, 

human AML blasts, AML SCs and triple negative breast 
cancer cells [135], D2 dopamine receptor signaling 
may represent a druggable receptor pathway in human 

CSCs and cancer cells, and established and safe 
dopamine antagonists such as thioridazine might be 
used for the elimination of CSCs in future clinical trials.  

4.5. Monoclonal Antibodies 

4.5.1. H90 (Anti-CD44), and P245 (Anti-CD44) 

H90 is a mouse monoclonal IgG1 antibody directed 
against human CD44 [324], a transmembrane 
glycoprotein and the receptor for hyaloronic acid, 

 

Figure 2: Tranilast (T), but not paclitaxel (Pax) inhibits tumorphere formation of highly aggressive mitoxantrone-resistant triple 
negative human (MDA-MB-231) and mouse (4T1) breast cancer cells. After tumorsphere formation for 7 days, Tranilast (200 
μM) or paclitaxel (20 nM) were added for 48 h to the cultures. V: vehicle. Adapted from [134], with permission from 
www.plosone.org. 
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osteoponitin, collagens, fibronection, selectin and 
laminin. CD44 mediates adhesive cell to cell and cell to 

extracellular matrix interactions through binding to 
hyaloronic acid and its other ligands [325]. CD44 is 
expressed on leukemic blasts in all human AML 
subtypes and plays an important role in the regulation 
of normal and malignant myelopoiesis [326, 327]. 
Ligation of CD44 by H90 activates CD44 signaling, 

reverses differentiation blockage and induces myeloid 
differentiation in AML blasts of subtypes M1 to M5 
obtained from patients [328]. H90 also inhibits 
proliferation, induces terminal differentiation and 
mediates apoptosis in human myeloid leukemia cell 
lines [329, 330]. CD44 is abundantly expressed on 

CSCs in hematopoietic and epithelial malignancies and 
fulfils some of the special properties that are displayed 
by CSCs [331]. Therefore, targeting CD44 by activating 
monoclonal antibodies appears as a reasonable 
strategy to eliminate CSCs.  

In fact, H90 is the first monoclonal antibody that has 
been shown to target CSCs. As demonstrated in a 
seminal study in 2006, H90 induces terminal 

differentiation and inhibits engraftment, homing, 
proliferation and the repopulation capacity of human 
AML SCs in a NOD-SCID mouse xenograft model 
[332]. This study reveals for the first time that CD44 is 
a key regulator of AML SC function that is essential for 
proper homing of AML SCs to microenvironmental 

niches and for maintaining AML SCs in a primitive state 
[332].  

Another mouse monoclonal IgG1 antibody raised 
against human CD44 is P245, which has been shown 
to reduce tumor growth and to eliminate breast CSCs 
in xenograft mice with human triple negative basal-like 
breast cancer [333]. Triple negative basal-like breast 
cancer cells resemble many features of breast CSCs, 

including expression of CD44high, CD24low, ALDH1, and 
the triple negative basal-like subtype of breast cancer 
is characterized by a high content of breast CSCs, 
aggressive proliferation, high metastatic capability and 
poor overall survival of patients [334-336]. P245 is able 
to significantly reduce tumor growth in xenograft mice 

with human triple negative basal-like breast cancer 
[333]. Treatment of the mice with doxorubicin and 
cyclophosphamide, a cytostatic drug combination 
commonly used for the therapy of triple negative basal-
like breast cancer, resulted in complete histological 
tumor regression, but residual breast CSCs survived 

the doxorubicin/cyclophosphamide therapy and could 
be detected by virtue of their CD44 expression [333]. 
Tumor relapse mediated by the residual CD44 breast 

CSCs occurred 4-6 weeks after complete histological 
regression, but the relapse could be effectively 

prevented when P245 was systemically injected during 
the tumor regression period [333]. These data provide 
substantial evidence that anti-CD44 monoclonal 
antibodies such as P245 can eliminate human breast 
CSCs and can prevent relapse of aggressive breast 
cancer.  

4.5.2. B6H12.2 (Anti-CD47), and 7G3 (Anti-CD123) 

B6H12.2 is a mouse monoclonal IgG1 antibody that 
binds to and blocks human CD47, a widely expressed 
transmembrane protein and a receptor for 

thrombospondin family members that also serves as 
the ligand for signal regulatory protein alpha (SIRP ) 
[337-339]. SIRP  is expressed on phagocytic cells 
including macrophages and dendritic cells, that when 
bound and activated by CD47 initiates a signal 
transduction cascade resulting in inhibition of 

phagocytosis [339-340]. Therefore, the CD47/SIRP  
interaction has been attributed as a tool that provides a 
“don´t eat me”-signal [341].  

A seminal study revealed that CD47 is abundantly 
expressed on human AML SCs and that CD47 is much 
more highly expressed on AML SCs than on their 
normal counterparts, such as hematopoietic stem cells 
(HSCs) and multipotent progenitor cells [342]. As 

investigated in a large cohort of AML patients, 
increased CD47 expression in human AML is 
associated with poor clinical outcome and worse 
overall survival, providing evidence that increased 
CD47 expresion on AML SCs substantially contributes 
to the pathogenesis and fate of human AML [342]. It 

was furher shown in this study that the CD47-blocking 
monoclonal antibody B6H12.2 preferently enables 
phagocytosis of human AML SCs by human and 
mouse macrophages [342]. Similar results were 
obtained in a study with human CD47-expressing 
bladder CSCs [343]. In a xenograft mouse model, 

B6H12.2 prevented the engraftment of human AML 
SCs, and treatment of human AML-xenograft mice with 
B6H12.2 completely eradicated AML cells by the 
mechanism of phagocytosis in vivo, whereas normal 
HSCs were not depleted [342]. Thus, human AML SCs 
can be targeted and eradicated with blocking anti-

CD47 antibodies such as B6H12.2 capable of enabling 
phagocytosis of AML SCs. 

The mouse monoclonal IgG2a antibody 7G3 
recognizes the N-terminal domain of the human 
interleukin-3 (IL-3) receptor  chain (CD123) and 
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functions as a specific IL-3 receptor antagonist that can 
antgonize IL-3 biologic activities, such as histamine 

release from basophil granulocytes or IL-6 and IL-8 
secretion from endothelial cells [344]. In comparison to 
normal HSCs, CD123 is overexpressed on AML blasts, 
CD34+ leukemic progenitors and AML SCs, and 
CD123 confers growth advantage of AML cells over 
HSCs [345-347]. Clinically, high CD123 expression in 

AML is associated with higher blast counts at diagnosis 
and a lower complete remission rate that results in poor 
prognosis and reduced survival [346, 348], ultimately 
defining CD123 as a promising cell-surface target for 
the elimination of AML SCs and the eradication of AML.  

In fact, the CD123-targeting antibody 7G3 has 
recently been shown to eliminate human AML SCs 
[347]. Ex vivo treatment of primary human AML cells 
with 7G3 selectively inhibited engraftment, repopulation 
ability and bone marrow and spleen homing of the cells 
in NOD/SCID mice, whereas 7G3 treatment of normal 
HSCs derived form human cord blood or bone marrow 
resulted in significant engraftment and hematopoietic 
differentiation of the human HSCs in NOD/SCID mice. 
Moreover, 7G3 selectively eradicated human AML SCs 
in NOD/SCID mice engrafted with primary human AML 
cells. It was further demonstrated that 7G3-mediated 
inhibition of engraftment and homing of AML SCs in 
NOD/SCID mice is dependent on antibody dependent 
cellular cytotoxicity (ADCC) induced by the Fc fragment 
of 7G3 and that 7G3 inhibits spontaneous and IL-3-
induced proliferation of AML SCs in vitro. These 
pleiotropic activities of 7G3 against human AML cells 
and AML SCs finally led to the reduction of AML 
burden and to an improved long-term survival of 
NOD/SCID mice engrafted with human AML [347]. 
Consequently, CSL362, a humanized monoclonal 
antibody that targets CD123 is currently in a phase I 
clinical trial in patients with AML (http://www.cancer. 
gov/clinicaltrials). 

4.5.3. MT110 (Anti-EpCAM/-CD3, Bispecific, 
Bifunctional), and Catumaxomab (Anti-EpCAM/-
CD3, Bispecific, Trifunctional) 

MT110 is bispecific bifunctional single-chain 

antibody construct of the BiTE (bispecific T cell 
engager) class that binds to epithelial cell adhesion 
molecule (EpCAM, CD326) and to the T cell receptor 
protein complex CD3 [349]. MT110 activates and 
redirects resting human peripheral CD4+ and CD8+ T 
cells to induce specific lysis and apoptosis of target 

cells expressing EpCAM, a transmembrane 
glycoprotein expressed by CSCs and epithelial cancer 
cells [349-351].  

Initially, it was demonstrated that MT110 is able to 
eradicate human colon cancer cells and patient-derived 

metastatic ovarian cancer in NOD/SCID xenograft mice 
[349]. Moreover, ex vivo treatment with MT110 of 
malignant pleural effusions obtained from patients with 
advanced breast cancer resulted in a specific lysis of 
pleural EpCAM+ breast cancer cells by activated and 
redirected autologous CD4+ and CD8+ T cells, 

indicating that breast cancer patients with malignant 
pleural effusions might benefit from targeted therapy 
with MT110 [350]. Finally, CSCs isolated from patient-
derived primary colon or pancreatic cancers injected 
together with allogeneic or autologous (donor-derived) 
peripheral mononuclear cells into NOD/SCID mice 

were effectively eradicated by MT110, and the CSCs 
did not establish significant tumor growth in the 
NOD/SCID xenograft mice treated with MT110 [352, 
353]. These promising results suggest that EpCAM-
expressing CSCs and cancer cells can effectively be 
eradicated by MT110. Thus, MT110 is currently in a 

phase I clinical trial in patients with advanced solid 
tumors (http://www.cancer.gov/clinicaltrials). 

Catumaxomab is a chimeric antibody construct 
consisting of two half antibodies, each with one light 
and one heavy chain that originate from parental 
mouse IgG2a and rat IgG2b isotypes [354]. This 
antibody construct belongs to a novel family of 
trifunctional, bispecific antibodies termed Triomabs, 

and has two binding specifities, one directed against 
EpCAM and one against the T cell receptor protein 
complex CD3. With its Fc fragment, catumaxomab 
additionally binds dendritic cells, macrophages and 
natural killer cells. Therefore, the anti-tumor activity of 
catumaxomab results from T-cell-mediated lysis, 

ADCC, and phagocytosis via activation of Fc  receptor-
positive accessory cells. Importantly, no additional 
activation of immune cells is necessary for effective 
tumor elimination by catumaxomab, which therefore 
represents a self-supporting system [355, 356].  

Catumaxomab has recently been shown to induce 
regression of malignant pleural effusions, malignant 
ascites and peritoneal carcinomatosis in patients with 

advanced epithelial cancers resistant to conventional 
chemotherapy [357-359]. In addition, catumaxomab is 
able to effectively eliminate CD133+/EpCAM+ CSCs 
from malignant ascites of patients with advanced 
ovarian, gastric and pancreatic cancer [360], indicating 
that catumaxomab can be therapeutically used to 

eradicate CSCs of epithelial cancers. Therefore, 
catumaxomab is currently in phase I-III clinical trials in 
patients with advanced ovarian, gastric and non-small 
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cell lung cancer, and is in the European Union on the 
market for the therapy of malignant ascites caused by 

epithelial cancers [361], (http://www.cancer.gov/ 
clinicaltrials).  

5. CONCLUSIONS AND FUTURE DIRECTIONS 

Work from the last few years highlights the 
possibility of selectively targeting CSCs, which are 
regarded as the major culprits in cancer. However, 
although the rather novel CSC concept of 
carcinogenesis is fairly accepted to date, more 
classical mechanisms and driving forces of 

carcinogenesis, including genome instability, epigenetic 
modifications, first oncogenic hit(s), clonal evolution, 
replicative immortality, invasion and metastasis, 
immune evasion, reprogramming of energy 
metabolism, and most probably, a complex interplay of 
all of these mechanisms must be considered as a basis 

for defining carcinogenesis and cancer in general [99, 
106, 362-367]. Nevertheless, in line with the CSC 
concept of carcinogenesis [1, 3, 4, 7-9, 99], CSCs 
constitute adequately characterized cells and represent 
novel and translationally relevant targets for cancer 
therapy [5, 67, 100, 101].  

Significant advances have been made recently in 
the discovery, development and validation of novel 

compounds and drugs that target CSCs, and the future 
clinical use of these novel agents may represent a 
powerful strategy for eradicating CSCs in cancer 
patients, thereby preventing tumor recurrence and 
metastasis, and, hopefully, contributing to the cure of 
cancer. There is growing consensus that conventional 

cytotoxic drugs are unable to eradicate CSCs [5, 12, 
66, 100], and, more disturbing, CSCs can be even 
selectively enriched by these drugs, as demonstrated 
in breast cancer patients receiving systemic 
chemotherapy comprising conventional cytotoxic drugs 
[10, 70, 71, 368]. Moreover, many novel tumor-targeted 

drugs, including tyrosine kinase inhibitors and 
monoclonal antibodies raised against tumor-specific 
cell surface proteins, also fail to eliminate CSCs [73, 
80, 88, 90, 98], so that there is an urgent need for 
novel compounds and drugs that effectively target 
CSCs for the use in elaborated clinical settings, 

preferably in combination with conventional cytostatic 
drugs and novel tumor-targeted agents.  

In this context, one promising candidate drug is the 
ionophore antibiotic salinomycin, which has recently 
been documented to effectively eliminate CSCs in 
different types of human cancers in vitro and in 

xenograft mice bearing human cancers [116, 117, 142, 
170]. It is important to note that salinomycin, in 

combination with conventional cytotoxic drugs, is much 
more effective in eradicating human cancers in 
xenograft mice than the single agent [116, 117]. Similar 
findings have been obtained in xenograft mice treated 
with a combination of sulforaphane and sorafenib [151] 
or curcumin and dasatinib [150] or metformin and 

paclitaxel [114]. More intriguingly, in phase I and II 
clinical trials, curcumin in combination with gemcitabine 
[110, 113] and docetaxel [111] has been proven 
successful in the treatment of advanced pancreatic and 
breast cancer, respectively. A recent phase I study of 
metformin and the mTOR-inhibitor temsirolimus in 

patients with advanced solid tumors and exhausted 
standard treatment options revealed similar promising 
results [115].  

This is in accord with the postulation that efficient 
cancer therapy should target all cancer cell 
populations, including CSCs, more differentiated 
progenitors, and bulk tumor cells that might be 
achieved by combining CSC targeting agents with 

conventional cytotoxic drugs, novel tumor-targeted 
drugs and radiation therapy [5, 100, 108]. Finally, the 
establishment of appropriate biomarkers and the 
definition of novel clinical endpoints for monitoring the 
efficacy of such combined therapeutic approaches will 
be a challenge [369, 370]. More work is required to 

study in detail the molecular mechanisms, the clinical 
efficacy, and the long-term safety of compounds and 
drugs that target CSCs, with the aim of providing novel 
and highly effective therapies for patients in all stages 
of cancer.  
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