1

Antitargets

hERG - potassium ion channel that coordinates the heart's beating. When this channel is inhibited by application of drugs it can result in a potentially fatal disorder called long QT syndrome; a number of clinically successful drugs in the market have had the tendency to inhibit hERG, and create a concomitant risk of sudden death, as an unwanted side effect, hERG inhibition must be avoided during drug development

P-glycoprotein transports substrates across the cell membrane, efflux pump for xenobiotics (e.g. drugs) with broad substrate specificity. It is responsible for multidrug-resistantance and often mediates the development of resistance to anticancer drugs.

Cytochrome P450 are the major enzymes involved in **metabolism** (~75%), they catalyze the oxidation of organic substrates, drugs included.

Bioavailability (PK - pharmacokinetic)

- *(in vitro)* active compound, to perform as a drug, has to reach its target in the human body (*in vivo*)
- **Drug-likeness** is qualitative concept to estimate bioavailability from the molecular structure before the substance is synthesized.

The drug-like molecule should have:

- \square an optimal MW and appropriate number of HBD, HBA (affecting solubility and absorption)
- optimal water and fat solubility, partition coeficient logP (octanol / water) to penetrate cellular membrane to rich target inside cells. The <u>distribution coefficient</u> (Log D) is the correct descriptor for ionisable systems. logD is pH dependent (e.g. pH = 7.4 is the physiological value of blood serum)

Lipinski's Rule of Five (Ro5)

Cell Membrane – protects cell compartment

The cell membrane provides a **hydrophobic barrier** around the cell, **preventing a passage of water and polar molecules.** Proteins (receptors, ion channels and carrier proteins) are present, floating in the cell membrane.

Lipinski Ro5

(an empiric rule, all numbers are multiples of five)

for prediction of bioavailability (**not activity**!) to quickly eliminate compounds that have poor physicochemical properties for an oral bioavailability

• an orally active drug has no more than one violation of the following criteria:

□ MW ≤ 500

- ❑ Lipophilicity (logP ≤ 5) octanol-water partition coefficient (better log D ≤ 5 respecting the ionic states present at physiological pH values)
- □ Sum of hydrogen bond donors ≤ 5 (NH,OH)
- **Sum of hydrogen bond acceptors** \leq 10 (N,O)

C.A. Lipinski et al. Adv. Drug Del. Rev. **1997**, 23, 3. (Ro5) G.M. Pearl et al., Mol. Pharmaceutics, **2007**, 4, 556–560. (log D introduced)

Absorption as f(PSA, LogP)

- pKa (influences binding Ki and logP) <u>https://epoch.uky.edu/ace/public/pKa.jsp</u> (free of charge) commercial software SPARC <u>http://www.archemcalc.com/</u> (5USD/monthly)
- AlogP (lipophilicity, water solubility) <u>http://www.vcclab.org/</u> (Virtual Computational Chemistry Laboratory)

Intestinal and other absorption

 % ABS = 109 – 0.345 PSA (good when % ABS > 30 %; lower PSA, higher absorption)

Zao YH et al. Pharm Res 2002, 19, 1446-1457.

BBB absorption

• LogBB = -0.0148 PSA + 0.152 CLogP + 0.139

CNS drug: logBB > -0.5 (otherwise side effects can be expected) non CNS drugs: logBB < -1

Other considerations

- despite good druglikeness some compounds should be avoided as drug candidates:
 - □ substructures with known reactive, toxic, mutagenic or teratogenic properties affect the usefulness (RCOX, (RCO)₂O, Michael acceptors, epoxides, -NO₂, -NO, -N₃, NH-NH, N=N...)
 - and with bad metabolic parameters, e.g. fast metabolism can quickly destroy the pharmacological activity of the compound

(metabolic half life, metabolic clearance should be determined)

From were to get the active compounds?	
A) The <u>Natural World</u>	Micro-organisms (bacteria, fungi) Marine chemistry (corals, bacteria, fish etc) Plant life (flowers, trees, bushes) Animal life (frogs, snakes, scorpions) Biochemicals (neurotransmitters, hormones)
B) The <u>Synthetic World</u>	Chemical <u>synthesis</u> (traditional, combinatorial synthesis, chemical collections, commercial sources)
C) The <u>Virtual World</u>	Computer aided drug design (CADD)
to call them active compounds" evaluation through biological screening is essential	

